Uniform boundedness of critical crossing probabilities implies hyperscaling

نویسندگان

  • Christian Borgs
  • Jennifer T. Chayes
  • Harry Kesten
  • Joel H. Spencer
چکیده

We consider bond percolation on the d-dimensional hypercubic lattice. Assuming the existence of a single critical exponent, the exponent ρ describing the decay rate of point-to-plane crossings at the critical point, we prove that hyperscaling holds whenever critical rectangle crossing probabilities are uniformly bounded away from 1.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Microsoft Technical Report MSR-TR-98-26 UNIFORM BOUNDEDNESS OF CRITICAL CROSSING PROBABILITIES IMPLIES HYPERSCALING

We consider bond percolation on the d-dimensional hypercubic lattice. Assuming the existence of a single critical exponent, the exponent ρ describing the decay rate of point-to-plane crossings at the critical point, we prove that hyperscaling holds whenever critical rectangle crossing probabilities are uniformly bounded away from 1.

متن کامل

Uniform Boundedness Principle for operators on hypervector spaces

The aim of this paper is to prove the Uniform Boundedness Principle and Banach-Steinhaus Theorem for anti linear operators and hence strong linear operators on Banach hypervector spaces. Also we prove the continuity of the product operation in such spaces.

متن کامل

Banach-Alaoglu, boundedness, weak-to-strong principles

• Banach-Alaoglu: compactness of polars • Variant Banach-Steinhaus/uniform boundedness • Second polars • Weak boundedness implies boundedness • Weak-to-strong differentiability The comparison of weak and strong differentiability is due to Grothendieck, although the original sources are not widely available.

متن کامل

THE UNIFORM BOUNDEDNESS PRINCIPLE IN FUZZIFYING TOPOLOGICAL LINEAR SPACES

The main purpose of this study is to discuss the uniform boundednessprinciple in fuzzifying topological linear spaces. At first theconcepts of uniformly boundedness principle and fuzzy equicontinuousfamily of linear operators are proposed, then the relations betweenfuzzy equicontinuous and uniformly bounded are studied, and with thehelp of net convergence, the characterization of fuzzyequiconti...

متن کامل

Gonality of Dynatomic Curves and Strong Uniform Boundedness of Preperiodic Points

Fix d ≥ 2 and a field k such that char k d. Assume that k contains the dth roots of 1. Then the irreducible components of the curves over k parameterizing preperiodic points of polynomials of the form z + c are geometrically irreducible and have gonality tending to ∞. This implies the function field analogue of the strong uniform boundedness conjecture for preperiodic points of z + c. It also h...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Random Struct. Algorithms

دوره 15  شماره 

صفحات  -

تاریخ انتشار 1999